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Abstract

A convex obstacle representation of a tree 71" is a drawing of the vertices of 7" in
the plane with a set of convex polygons so that two vertices are connected by an edge
if and only if that edge does not intersect any of the polygons. The minimum number
of obstacles required to represent a tree in this way is called the convex obstacle num-
ber of the tree. This new description of a graph has steadily gained popularity since
its introduction in 2009, and is particularly interesting because of its relationship to
visibility graphs, which have been studied extensively and have applications in robot
motion planning and architecture. So far, it is known that a representation using only 5
convex obstacles exists for all trees, which implies that the upper bound for the convex
obstacle number of any given tree is five. However, not much is known about which
trees have a convex obstacle number that is less than 5. In this thesis, we begin to
fill this gap by providing necessary and sufficient conditions for a tree to have convex
obstacle number 1 or 2. We also provide insights into how one could approach the

problem of finding all trees with convex obstacle number 3 or 4.
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1 1 Introduction

1 Introduction

1.1 Background

Obstacle representations of graphs are a relatively new way of representing graphs in the
plane that is related to visibility graphs. An obstacle representation of a graph G is a choice
of locations for the vertices of GG in general position along with a set of polygonal obsta-
cles, such that an edge exists in G if and only if the corresponding line segment between
the vertices does not intersect an obstacle. Closely related to obstacle representations is
the obstacle number, which is the minimum number of obstacles needed to represent GG
in the plane. The first paper to define this concept was Alpert et al. [Al] in 2009, and
they produced many interesting results as well as a number of open questions that remain
unanswered.

The only graphs that have obstacle number O are the complete graphs. Non-complete
graphs that have obstacle number 1 are unique in that merely finding a 1-obstacle repre-
sentation provides proof that the obstacle number is exactly 1. Alpert et al. were the first
to study these types of graphs, and they found entire families of graphs that have obstacle
number 1, including outerplanar graphs and certain bipartite graphs. Perhaps more inter-
esting, however, are graphs that do not have a 1-obstacle representation. Finding a graph
that has obstacle number at least 2 requires a proof that no 1-obstacle representation exists.
Alpert et al. were able to find a few examples of such graphs, and these results were then
extended in a paper by Pach and Sarioz [PS]. Still other results show that there are graphs
with arbitrarily large obstacle number, examples of which can be found in [All], [PS]], and
[Mul].

There are many results which show that finding the obstacle number of an arbitrary
graph is not an easy task. A paper by Johnson and Sarioz [JS] proved that the general case of
finding an obstacle representation using the minimum number of obstacles for a graph G is
NP-hard, and in an upcoming paper by Giacomo et al. [G1], the NP-hard condition was also
proven for the problem of determining whether an outside obstacle representation can be
drawn for an arbitrary planar graph given a set of obstacles. However, algorithms for more
restricted cases have been found. Sarioz [Sa] created a polynomial-time approximation
algorithm for the obstacle number of a graph, and Koch et al. [Ko] found a linear time
algorithm for finding plane outside-obstacle representations for biconnected graphs.

In this paper, we are particularly interested in what is known as the convex obstacle
number of a graph. This is the same as the obstacle number, except that all of the obstacles
are required to be convex polygons. The motivating problem for us came from a paper by

Fulek et al. [Fu], in which they found a construction for any outerplanar graph that requires
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only 5 convex obstacles. This is one of the first results in the area of obstacle representations
that is actually an upper bound, and we know this bound to be tight thanks to Fulek et al.,
who in the same paper proved that there must exist trees with convex obstacle number
at least 4. However, no results currently exist that determine which graphs have convex
obstacle number less than or equal to 4. In this thesis project, our objective was to expand
upon the results of Fulek et al. concerning outerplanar graphs. For the scope of this paper,
we limit ourselves to the study of trees, which are a subset of all outerplanar graphs. The
eventual goal of this project is to fully characterize all trees with convex obstacle number 5

or fewer.

1.2 Our Results

In this thesis, we provide necessary and sufficient conditions for a tree to have convex ob-
stacle number 1 or 2. These results were tractable because we did not have to take into
account the possibility of edge crossings in our representations (See Lemma[2.2)). For con-
vex obstacle numbers 3+, some crossings may be necessary, as they are certainly required
for the construction in Fulek et al. to work.

In the 1-convex obstacle case, our result is particularly nice because it revolves around
a very well-known family of trees. A caterpillar graph is a tree whose vertices are all a
distance 1 from a central path, which is referred to as the spine of the caterpillar. Using this
family of trees, we present the statement of our first Theorem below, and then go through

the proof in section [2.2]
Theorem 1. A tree 'T' has convex obstacle number 1 if and only if 'T' is a caterpillar graph.

This theorem suggests that caterpillar graphs and the convex obstacle number of a tree
are closely related. In fact, this relationship persists through the classification of trees with
convex obstacle number 2. We define an n-caterpillar coloring of a tree T as a coloring of
the vertices and edges of 7" using n colors so that the subgraph formed by each color is a
connected caterpillar graph. In this definition, we will allow all vertices and edges to have
multiple colors. That is, if a vertex/edge is marked with k colors, then that vertex/edge is a
part of the caterpillar graph formed by each of the colors. Next, just like the definition of
the obstacle number, we will let the caterpillar number of a tree T be the minimum n such
that 7" has an n-caterpillar coloring. Using this definition, we find the following character-
ization for trees with convex obstacle number 2. Once again, we will save the proof of this

Theorem for section 3.2l
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Theorem 2. A tree T has convex obstacle number 2 if and only if T' has caterpillar number
2.

2 Trees with Convex Obstacle Number 1

2.1 Preliminaries

We begin our study of the obstacle number of trees by stating a few Lemmas that will aid
in the proof of our two main results. Many of these arguments mirror those used in [Fu],
but for ease of understanding we will rigorously prove them here. It is our belief that these
Lemmas will continue to be useful beyond the scope of this paper, and we aim to provide a
useful starting point for those interested in continuing this research.

First, since our study focuses exclusively on convex polygons, the following observa-
tion will be useful because it captures the limitations one faces by using convex obstacles

as opposed to general polygonal obstacles.

Observation 2.1. If a convex obstacle is used to represent a path v,vov3 in general position,
then the obstacle can only exist within the union of the triangle Av,vov3 and the half-plane

defined by the line through v,vs, as shown in the figure below.

In the above diagram, the shaded region denotes the only valid positions for a convex
obstacle that intersects the non-edge v;vs. This observation is a key component of the

following Lemmas, which we will refer to frequently in this paper.

Lemma 2.2. There are no edge-crossings in any 1 or 2-convex obstacle representation of

atreeT.
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Proof. Assume that there are two edges v,v5 and v3v4 in a tree T’ that cross in a convex
obstacle representation of 7. Let v5 be the point of intersection of these two edges. Then
observation tells us that we need four distinct obstacles to represent the four paths

V1U503, V1V5V4, UaU5V3, and vav5v4, as shown in the diagram below.

V1 V4

v3 (2P

The four pictured non-edges each require a separate obstacle.

However, this is not a true lower bound for the number of convex obstacles in a repre-
sentation that includes crossings, as we can change at most one of the non-edges in 7" to an
edge. Without loss of generality, let v; and v3 be connected. We now cannot connect any of
the other non-adjacent vertices without creating a cycle, which breaks the assumption that
T is a tree. Thus we can reduce the number of convex obstacles needed to represent 7" by
at most 1, and it follows that no representation of a tree with at least one edge crossing can

have convex obstacle number less than 3. ]

This Lemma tells us that there is no 1 or 2-convex obstacle representation of a tree that
contains a crossing. Thus for all of the following Lemmas and Theorems, we will assume

that any representation of a tree 7" has no edge-crossings.

Lemma 2.3. Given a path vivsvs of length 2 in general position, any other path of length
2 that is incident to vivovs and at least partially contained within the triangle Avivovs

cannot be represented with a single convex obstacle.

Proof. Let vivov3 be a path in general position. For this proof, we consider a path of length
2 that starts either at vertex v; or v, without loss of generality. This gives us a total of three
cases to consider. First, assume that we have a path vyv4v5. Without loss of generality, we
will assume that the non-edge v;v, does not intersect the non-edge v,vs5, as shown in the
diagram below. If these two non-edges did in fact intersect, then we could consider the

non-edges v3v, and vyv5 instead.
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Now, observation tells us that any obstacle that intersects the non-edge v,v5 can
only exist in the shaded region above. However, this means that the non-edge v;v4 cannot
fall within this region, and thus requires a second convex obstacle, as desired.

We now consider the case where we have a path that starts from vs, namely vsvvs.
Within this case, we must separately consider the situations where the non-edges v,v4 and
v3v5 intersect and where they do not. These situations are illustrated in the diagrams below,
where observation [2.1] has already been applied to highlight the possible locations for a

convex obstacle that touches v3vs.

In the left diagram, Zvsv v; guarantees that the non-edge vov, cannot fall within the
shaded region, and thus requires a second obstacle. In the right diagram, recall that the
path v3v4v5 must fall within the triangular convex hull. This means that vs must lie within
Avyvyv3. However, this means that the non-edge v;v4 cannot fall within the shaded region.
Thus in either situation a second obstacle is required, which completes the proof. It follows
that any path of length 2 inside a triangular region cannot be represented by a single convex

obstacle, as desired. OJ

A natural question to ask after seeing the proof of Lemma is whether a path of
length 2 inside any polygon necessitates 2 convex obstacles. It turns out that it does, and
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the proof follows immediately from Lemma 2.3l We therefore leave this result as the

following Corollary:

Corollary 2.4. A path of length 2 that is at least partially contained within any polygonal

region cannot be represented with a single convex obstacle.

Proof. This result follows from a triangulation of our polygonal region and Lemma [2.4]
Consider any polygonal region that contains a path of length 2 extending from a vertex v.
Let v, and v3 be the two vertices directly adjacent to vs in the polygon. Then we can create
a triangle Av;v,v3 that contains the path of length 2. It then follows by Lemma [2.3]that our
polygon cannot have a 1-convex obstacle representation, since this would imply that the
subgraph formed by our path and Av;vsv3 has a 1-convex obstacle representation, which

is a contradiction. The desired result follows. O]

In the previous proof, as well as the proof of Lemma[2.2] we assumed implicitly that the
subgraph of a tree 7" has obstacle number less than or equal to that of 7". This fact is easy to
prove. Let 7" be a tree with convex obstacle number n. Then there is some representation
of 7" in the plane that uses exactly n convex obstacles. Notice that deleting vertices of
T does not create any new non-edges, and thus all non-edges of 7' that intersected one
or more of the n obstacles will intersect the same obstacles in any subgraph of 7". Thus
deleting vertices cannot increase the convex obstacle number of a tree 7. This idea is easily

generalized to the following, which we state as an observation:

Observation 2.5. If a graph G has obstacle number n, then any induced subgraph of G

has obstacle number less than or equal to n.

Our final preliminary result involves the convex hull of a tree T', which is the smallest
convex region that contains all of the vertices of 7. It turns out that information about the
number of non-edges in the convex hull of a tree tells you a lot about the convex obstacle

number of that tree. This is the motivation behind the following Lemma:

Lemma 2.6. In any I-convex obstacle representation of a tree T', the convex hull of T' has

exactly I non-edge.

Proof. We will proceed by contradiction. First assume that the convex hull of our tree
T contains two non-edges. Since we are working with a single obstacle, we know that
the obstacle must pass through both edges. Furthermore, since the obstacle is convex, the
interior of the obstacle must pass through the convex hull, connecting these two non-edges.

This separates our tree 7' into two disconnected parts as shown in the diagram below.
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But this gives us a contradiction, as we always assume that 7" is a single, connected
tree. It follows that 7" cannot have two non-edges in its convex hull, and therefore it must

have only one, as desired. L]

2.2 Proof of Theorem 1

The proof of Theorem 1 can be divided into two main steps. First, we will show that all
Caterpillar graphs can be represented using only a single convex obstacle. Then, we will
prove that all trees that are not Caterpillars have convex obstacle number 2 or more. For the
first step, we will provide a construction that takes a given Caterpillar tree 7" and creates a
representation using only a single convex obstacle. We begin by describing a construction
for star graphs, which are a subset of the family of Caterpillar graphs that consist of n

leaves adjacent to a single central vertex.
Lemma 2.7. All star graphs have a 1 convex obstacle representation.

Proof. Consider a star graph S with central vertex v and n leaf vertices, and consider any
rectangular obstacle. The following process will allow us to transform the obstacle so that
it blocks all of the non-edges of .S:

1. Place the central vertex v above one side of the rectangular obstacle. Arrange the n
leaf vertices of S along the top of the obstacle so that they are just barely not touching
the obstacle.

2. Make very slight perturbations in the top layer of the obstacle so that no two of the
leaf vertices can see each other. This process is well-defined, and does not make the

obstacle non-convex.
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An example of this construction is given below. Notice that all of the non-edges of S fall
between the n leaf vertices, all of which are blocked by our convex obstacle. Therefore,
this construction creates a valid 1-convex obstacle representation for any star graph, as
desired. [

Now, using Lemma we can create our desired construction for any Caterpillar
graph. Let GG be such a graph with m vertices in its spine, and construct an obstacle that is
a regular m-gon. Arrange the m vertices in the spine of GG so that each one is above exactly
one side of the obstacle. It is easy to do this in such a way that two vertices in the spine see

each other if and only if they are connected.

Now consider any vertex v; in the spine of G that is adjacent to vertices vy and v3. In
the diagram above, notice that region R is the area formed by the obstacle that neither v,
nor v3 has vision of. Thus we can arrange all other vertices adjacent to v; within region I
in a manner that mirrors the construction used in the proof of Lemmal[2.7] altering the edge

of our obstacle as needed. Thus each of the leaves in our Caterpillar graph can only see the
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vertex in the spine that they are adjacent to, and it follows that all Caterpillar graphs have

obstacle number 1, as desired.

For the second portion of the proof, we will define an n-claw to be a tree consisting of
n paths of length 2 each originating at a common root vertex. Now, recall that a defining
characteristic of Caterpillar graphs is that they do not have a 3-claw as an induced sub-
graph. Therefore, observation [2.5]tells us that proving the 3-claw does not have a 1-convex
obstacle representation implies that the Caterpillar graphs are the only trees to have convex

obstacle number 1.

Ur

Vo

V1 U3

V4 V6

In our proof that the 3-claw has obstacle number 2, we will use the labeling scheme
from the graph G above, and proceed by contradiction. First assume that G has a 1-convex
obstacle representation. Then from Lemma [2.6] we know that the convex hull of G must
contain exactly one non-edge. We also know that this non-edge cannot be incident to the
root vertex v,. To see why, assume without loss of generality that this non-edge is v,vy.
Then all of the other 2-paths in G must be completely contained in the triangle Av,v,vy.
However this situation is impossible because it contradicts Lemma [2.3] It follows that
v, must be adjacent to both of its neighbors in the convex hull. We will assume without
loss of generality that these vertices are v; and v,. Then the path v,v3v; must fall within
the triangle Av,v,v9, which would require 2 convex obstacles to represent by Lemma [2.3]
This means that the 3-claw, and therefore any graph that contains the 3-claw as an induced
subgraph, cannot have a 1-convex obstacle representation. It follows that a tree 7" has

convex obstacle number 1 if and only if it is a caterpillar graph, as desired.
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3.1 Preliminaries

We begin by generalizing a previous result to help us narrow down the cases that we need
to consider as we add more obstacles. The first is an extension of Lemma which we

proved in the previous section.

Lemma 3.1. In any convex obstacle representation of a tree I with n obstacles, the convex

hull of T' cannot have more than n non-edges.

Proof. We will proceed by contradiction. First assume that we have a convex obstacle
representation of a tree 7" with n convex obstacles and n + 1 non-edges in its convex hull.
Now consider coloring each of our obstacles one of n colors. Then since we have n + 1
non-edges in the convex hull, one colored obstacle, say the red one, must pass through two
non-edges. If this is the case, then the interior of the red obstacle must pass through the
interior of our tree 7', which would separate at least one vertex from the root of 7', giving
us a contradiction. It follows that the convex hull of 7" cannot have more than n non-edges,

as desired. O]

An contradiction in the case of n = 2

After studying the convex hull, the next best strategy for approaching problems involv-
ing two convex obstacles is to find limitations on the positions of the vertices themselves.
The next Lemma is powerful in this regard, although it cannot be generalized beyond the

2-convex obstacle case.
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Lemma 3.2. In any 2-convex obstacle representation of a tree T, if one vertex v of T' has
degree 3 or more, then all other vertices that are adjacent to v must be on the same side of

some line through v.

Proof. Assume that there was no such line as described above. Let vy, vy, and v3 be neigh-
bors of v. Then we must have a situation in which no angle between two edges has degree

measure greater than or equal to 180 degrees, as shown in the diagram below:

But this leaves us with a representation whose convex hull has 3 non-edges. By Lemma
[3.1] this is impossible with only 2 convex obstacles, and thus we arrive at a contradiction.
It follows that there exists a line that passes through v such that all other vertices of 7" are

on the same side of the line, as desired. O]

As we have seen in the previous section, n-claws are of central importance when prov-
ing our main results. This is still true in the 2-convex obstacle case, only now we need to
be even more specific about how our claws can be represented in the plane. The following
two Lemmas will be very helpful in this regard. The first is a generalization of an argument
used in [Ful], and the second is a new technique introduced in this paper. We begin with
some definitions. Consider the tree 7' that consists of a single n-claw with central vertex
v. We will call the vertex in each path that is not the leaf the joint if the path. A pinwheel
representation of T' is a drawing of 7' in the plane such that a line rotated about the root
vertex either clockwise or counterclockwise will always touch the joint of a path before its
leaf. This gives us a set of n triangular blades, which are the triangular regions defined by

each claw in 7. We will call a pinwheel representation simple if no line can be drawn that
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connects two non-edges both incident to the root vertex without touching an edge of 7. An

example of a simple pinwheel representation is shown below.

With these definitions, we can now state our first Lemma:

Lemma 3.3. A pinwheel representation of a tree T with n paths of length 2 (equivalently,

n blades) requires exactly n convex obstacles to represent it.

Proof. First, notice that any simple pinwheel representation of a tree I’ requires n convex
obstacles by definition. If the same obstacle were to intersect two of the non-edges incident
to the root vertex, then there must be a line through the obstacle that crosses an edge of 7',
which is a contradiction. Thus we only need to consider the special case when the repre-
sentation is not simple. This occurs when triangular regions in the pinwheel representation

overlap, such as the regions A and B as well as B and C in the image below:
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However, in any such situation we can repeatedly apply Lemma to show that we
need n obstacles for the n paths. To do this, we individually consider all possible choices
of 2 paths. In our example, we would look at the pairs (A, B), (A, C), and (B, C'), where
each letter refers to the path that creates the labeled blade in the above diagram. For each
pair, there are exactly two cases: Either the triangular regions formed by each path overlap,
or they do not. In the first case, the two paths require separate obstacles as a consequence
of Lemma[2.3] In the second case, we have a simple pinwheel representation, which we
have shown to requires 2 distinct obstacles. It follows that all pairs of paths require separate

obstacles, and thus we need at least n convex obstacles in our representation, as desired.
O

Our next Lemma further limits the number of non-edges that can appear in the convex
hull when we look at n-claws specifically. In this paper, we provide a slightly stronger
result that applies to n-claws with paths of any length. Note that we need to assume no
edge-crossings here, as we are no longer protected by Lemma [2.2] when we are working

with more than 2 convex obstacles.

Lemma 3.4. In an n convex obstacle representation of a tree T consisting of n + 2 paths
of length at least 2 that do not intersect and are incident to a single central vertex, there

can be at most n — 1 non-edges in the convex hull of T'.

Proof. We will proceed by contradiction. First, given a tree 7" with n 42 paths as described
above, assume we have a representation of 7' that includes n obstacles and n non-edges in

the convex hull. Let v, be the central vertex of 7', and let vy, vy, ... v, 2 be the vertices
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in each path that are adjacent to v,. For each k € [0,n], consider the n + 1 triangles
Av,vgvgs. I claim that there must be a path that passes through one of these triangles.
To see why, notice that in the best case scenario each of the n non-edges in the convex
hull of T" connect two distinct paths of 7. This leaves us with n + 1 paths that touch a
non-edge in the convex hull and one that does not. These n + 1 paths create n disjoint
polygonal regions inside the convex hull of 7°, each corresponding to one of the triangles
we defined earlier. If our one remaining path was not at least partially contained within one
of these triangles, than it would be part of the convex hull. In this situation, since we do not
allow edge crossings, the path would touch a non-edge in the convex hull as well, which is a
contradiction. It follows that this path passes through triangle Av,vvg, 1 for some k, and is
therefore completely contained in the polygonal region that contains Av,vvg. 1. However,
since we have exactly n obstacles and n non-edges in the convex hull, only one obstacle
can block non-edges within this region, which gives us our contradiction by Lemma [2.4]
The desired result follows. ]

Lastly, we turn our attention towards finding patterns that appear in every 2-convex
obstacle representation of the 3-claw. Clearly, not all representations of the 3-claw allow
us to use only two convex obstacles, but knowing which configurations do will be helpful
for determining the convex obstacle number of trees that contain the 3-claw as an induced
subgraph. Since Theorem 1 implies that all trees with convex obstacle number 2 or more
contain the 3-claw as an induced subgraph, the following Lemmas will be useful whenever

we must assume that a tree has convex obstacle number 2.

Lemma 3.5. In any 2-convex obstacle representation of the 3-claw, the root of the claw

must be part of the convex hull.

Proof. Assume that we have a 2-convex obstacle representation of the 3-claw 7'. Recall
from Lemma [3.2) that there must exist a line L through the root vertex v, of 1" so that all
neighbors of 7" are on the same side of L. Let vy, v9, and v3 be the three neighbors of v,,
where edge v,v3 divides angle Zvyv,v5. We claim that both v3 and the leaf vertex v, adja-

cent to v3 must lie outside of triangle Awvyv,v9. To see why, refer the three diagrams below.
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In the first (leftmost) case, where both v3 and v, are within Awv;v,v,, either the non-

edges vyv3 and v,v4 require separate obstacles, or the non-edges v,v3 and v,v4 do. In the
second case, where the path v,v3v4 divides triangle Avjv,v9, we see that v;vs and vovs
require separate obstacles as well. Lastly, if v lies outside of the triangle but v, does not,
the non-edges v1v4 and vov, require separate obstacles. Thus in all cases, both obstacles
touch non-edges within triangle Av,v,.v5, and by observation [2.1) we have that v, must be
part of the convex hull of T, since no obstacle can exist above the line that passes through
v, and is parallel to the non-edge v;vs.

Now if we are to believe that v, is not part of the convex hull of 7', it must be the case
that v3 and v, are both outside of Av;v,v5. However, in this situation, the subgraph of T’
that contains only the vertices v,., v1, V5, and v3 already has two non-edges in its convex
hull. Thus it will be useful to consider only the subgraph S = T — {v,}, to take advantage
of these two non-edges in our analysis. Doing so limits the area where vertices that are
above the line L can be found. In particular, this tells us that there cannot be two leaves of
S above this line whose non-edge is part of the convex hull of S. This would leave us with
3 non-edges in the convex hull of S, which contradicts Lemma@ Thus we can only have
a single vertex v* above L that participates in the convex hull of 7'. In the diagram below,
we highlight the only valid region for this vertex, assuming without loss of generality that

v* is adjacent to vertex v; (as opposed to vy). separately).
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The shaded region is defined by lines through vsv, and viv,

As long as v* falls within this shaded region, we see that the convex hull of .S will
consist of the vertices vy, v3, and v*, and therefore it contains only two non-edges. If we
place v* anywhere else, then either we will have 3 non-edges in the convex hull, or v, will
be part of the convex hull, both of which are contradictions.

We now condition on the location of vertex vg, which is adjacent to v,. First, notice
that the edge v,vg cannot cross the non-edge v3v*, as this situation requires three separate
obstacles to block non-edges v, v3, v3v9, and vov*. If vg 1s inside this convex hull, then either
the non-edges v,vg and vov3 intersect, or they do not. If they do not, then they require
separate obstacles by observation If they do intersect, then the subgraph formed by
removing vertex vs is a pinwheel with 2 blades, which also requires two distinct obstacles.
In either case, neither of the non-edges discussed can share an obstacle with v;v3, the other
non-edge in the convex hull of 7. Thus we have our contradiction, as we have only 2
convex obstacles to work with. It follows that v* cannot exist in the highlighted region, and
thus v, cannot be part of the convex hull of S. It follows that v, must be part of the convex
hull of S. All that remains to be proven now is that this condition also holds for the larger
tree 7.

Since the root vertex of S must be part of the convex hull of S, the only remaining
candidate for v* in 7' is vy, the leaf that is adjacent to vs. In this situation, we can draw the
same region for all possible locations of v* from above, except this time v3v* is an edge
while v1v* is a non-edge. The same argument from before can then be used to show that
this situation also requires 3 convex obstacles. It follows that there exists a line through
v, such that all other vertices of T" are to one side of the line, and thus it must be the case
that v,. is part of the convex hull of any 2-convex obstacle representation of the 3-claw, as
desired. ]

Now that we know where the root is located in any representation of the 3-claw, we turn
our attention to our final preliminary Lemma, which provides us with more information

about the layout of the edges in the convex hull.

Lemma 3.6. In any 2-obstacle representation of an n-claw T, the root of T' must be adja-

cent both of its neighbors in the convex hull of T' for any n > 2.

Proof. There are two cases to consider here. The first is where the root v, is adjacent to
neither of its neighbors in the convex hull, and the second is where it is adjacent to only
one of its neighbors. We will show that both of these cases lead to contradictions when we

only have two obstacles to work with.
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1. First, assume that the root v,. of 7" shares non-edges with two vertices v; and v5 in the
convex hull of T'. Since we have a 2-convex obstacle representaton, these must be the
only two non-edges in the convex hull, and thus there is a path along the convex hull
from v; to vy. Since v, is not adjacent to either vertex, there must be a third vertex
vs such that vs is part of the path that contains v,., v1, and vo. However, this path has

length greater than 2, which is a contradiction, as no such path exists in the 3-claw.

2. Next, assume that v, is adjacent to only one of its neighbors in the convex hull. In
this case, we let v,.v; be the non-edge and v, vy be the edge. Then v; must be a
leaf of 7" and there is a third vertex v3 adjacent to both v; and v,. Now, since we
are working with convex polygons, the non-edges v,v; and vovs must be blocked by
different obstacles. However, a third path of our claw must fall within exactly one of
the triangular regions Av,v;v3 and Av,v9v3. This leads to a contradiction by Lemma

since each region can only contain a single obstacle.

Since both cases above lead to contradictions, it follows that the root must be adjacent to

both of its neighbors in the convex hull, as desired. 0

We end this section with a definition motivated by the preceding Lemma. We say that a
path is strictly convex if every pair of edges in the path turns in the same direction. That is,
if one were to traverse the path in entirety from one side to the other, then one would only
make left turns or only make right turns when passing from edge to edge. Notice that for
the 3-claw, Lemma [3.6|ensures that there are two claws which, when considered as a single
path of length 4, form a strictly convex path, as otherwise there would be a non-edge in the

convex hull that is incident to the root, which we have shown to be impossible.
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3.2 Proof of Theorem 2

We begin our discussion of Theorem 2 with a motivating example. In the previous section,
we saw that the 3-claw played an important role in the proof of Theorem 1. In this section,
we will find that it is the 5-claw which is the center of attention, since it is the first n-claw

to require 3 convex obstacles, as shown in the following theorem.

Theorem 3.7. The 5-claw (depicted below) does not have a 2-convex obstacle representa-

tion.

Proof. This proof follows from Lemma [3.3| concerning pinwheel representations. The pi-
geonhole principle tells us that in any convex obstacle representation of the 5-claw, three
of the five claws must form a subgraph that has a pinwheel representation with 3 blades.
However, with only two obstacles in our representation, this contradicts Lemma It

follows that the 5-claw does not have a 2-convex obstacle representation, as desired. L]

Now, before we dive into the proof of Theorem 2, it will be necessary to introduce some
new definitions. We will refer to the convex hull formed by the vertices of the polygonal
obstacles in any obstacle representation as the obstacle convex hull. We will then call the
inner face of an obstacle convex hull the area within the hull that is not occupied by an
obstacle. Note that when we are not working with overlapping obstacles, there is exactly

one inner face, an example of which is shown below:
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In the above situation, we have two edges in the obstacle convex hull that are not a
part of either obstacle. In fact, it can be easily shown that with two obstacles that do not
intersect, there will always be two such edges, which we will call the sides of the inner
face. The key insight that makes the inner face so important for the proof of Theorem 2 is

the following, which we state as an observation.

Observation 3.8. Given a tree T and a 2-convex obstacle representation of T, the subgraph
S of T that is not contained within the inner face of the obstacle convex hull must be a
disjoint unions of caterpillar graphs. In other words, S cannot contain the 3-claw as an

induced subgraph.

The logic behind this observation is that the convex hull of two obstacles is itself a
convex polygon. Thus if you replace the two obstacles in a representation with the single
convex obstacle that is equivalent to the obstacle convex hull, the subgraph S outside of
the inner face must have a valid 1-convex obstacle representation. This follows because S
must have been part of a valid representation when the obstacles were separate, and filling
in the inner face does not change the positions of any of the vertices in S.

Now that we know what cannot be outside of the inner face, the natural question to ask
is what cannot be inside of the inner face. If we understand both, we can get a constraint
on the type of trees that can be represented with two convex obstacles. In order to answer
this question, we need to make use of the following Lemma, which will continue to be

important as we proceed through the proof of Theorem 2.

Lemma 3.9. In any 2-convex obstacle representation of a tree 'T' in which the convex hull
of T contains only a single non-edge, there is some vertex v € T' that is not in the inner
face of the two obstacles.
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Proof. Consider a tree 1" as described above, where v,v; is the single non-edge in the
convex hull. Since we are working with convex obstacles, extending the segment v;v2 to
a line L divides the plane into two disjoint regions, call them U and V. All of the vertices
of T" must fall into one of these regions, say region V' without loss of generality. Then the
union of the convex hull of 7" and region U defines the entire space where the obstacles
can exist, since we are requiring that the obstacles be convex. We will call this combined
region R. Now, consider what happens when we shift our line L in a single direction until
moving it any further will cause it to leave region 2. At this point, either L intersects R at a
single vertex vs, or at an edge v3v, that is parallel to v;v,. Since our obstacles are in a fixed
position in any representation of 7', we can shift L a distance ¢ in the opposite direction as
before so that L separates the two obstacles from the vertex vz (and from v, if necessary).
But then this vertex cannot exist within the inner face of the obstacle convex hull, and it

follows that 7" cannot be completely contained within the inner face, as desired. [

This Lemma allows us to say that, for any representation of a tree 7', if we can find a
subgraph .S of 7" such that the convex hull of S contains both obstacles and only a single
non-edge, then some vertex in S cannot be part of the inner face of the obstacle convex
hull. This Lemma gives us everything we need to prove the following, which answers the
question posed above about what trees can and cannot be found within the inner face of a

2-convex obstacle representation.

Lemma 3.10. No tree T that that contains the 3-claw as an induced subgraph can be
drawn entirely within the inner face of a 2-convex obstacle representation of T'. That is,
in any 2-convex obstacle representation of T, the subgraph S of T whose vertices all fall

within the inner face must be a disjoint union of caterpillar graphs.

Proof. First, consider any 2-convex obstacle representation of the 3-claw 7. Lemma [3.5|
and [3.6| taken together tell us that the root vertex v, of 7" must be part of the convex hull
of T" and adjacent to both of its neighbors. Let vy, v, and vs be all vertices adjacent to v,,
where edge v,v3 divides Zv,v,v5. We know that there is a subgraph S of 7" that contains
vertices v,., v1, and vo, and whose convex hull has exactly one non-edge and contains all of
the vertices of S. In other words, the vertices of S taken together form a convex polygon
with a number of sides equal to the number of vertices in S. In the simplest scenario, S
would only contain the vertices v,, vy, and v,, and therefore the convex hull of .S would
contain only the non-edge v,v5. Let P be the largest such subgraph of 7', that is, the one
that contains the most vertices of 7" and whose convex hull has only one non-edge. Now let

vy be the leaf adjacent to v3. We will condition on whether or not v4 can be found within
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P, and show that in either case both obstacles must exist within P. First, if the entire path
VU304 1s contained within P, then notice that the non-edge v,.v4 will intersect exactly one
of the non-edges v;v3 or vov3. The one that it does not intersect requires a distinct obstacle
by observation [2.1] and thus both obstacles must exist within P. However, if at least part
of the path v,v3v,4 exists outside of P, we must use a different approach. Let v5 and vg be
the vertices adjacent to v; and v,. Then the non-edges v,v5 and v,vs must be within our
polygon P, as shown below. If they weren’t, then v, would be adjacent to one or both of

them in the convex hull of 7', which contradicts Lemma|3.6

Two possible configurations for I'. The shaded region is the polygonal subgraph P

However, as shown above, the path v,.v3v4 divides P into two disjoint regions, which
makes it impossible for a single convex obstacle to touch both v,v5 and v,vg. Therefore
both obstacles must exist within P, as in the previous case. It now follows from Lemma
[3.9] that the 3-claw cannot exist within the inner face, since both obstacles must fall within
the polygonal region P. Thus, the only trees that can exist within the obstacle convex hull

are the caterpillars, as desired. 0

With these results in hand, we are now in a position where we can prove Theorem
2. Our proof can be divided into three main steps, which are outlined below. Each step
corresponds to one of the results from this section, and Theorem 2 is a direct consequence
of the three.

(1) First, we will prove that, if a tree has a 2-caterpillar coloring, then it must have a

2-convex obstacle representation. See Theorem (3.11

(2) We will then prove that a tree has a 2-caterpillar coloring if and only if it cannot be

reduced to the 5-claw through a series of edge contractions. See Theorem [3.14]
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(3) Lastly, we prove that any tree that can be reduced to the 5-claw through a series of

edge contractions does not have a 2-convex obstacle representation. See Theorem

3.15]

Theorem 3.11. If a tree T has a 2-caterpillar coloring, then it has a 2-convex obstacle

representation.

Proof. We will prove this claim by construction. Assume that we have a 2-caterpillar

coloring of a tree 1" using the two colors red and blue. Our construction proceeds as follows:

1. Without loss of generality, start by creating the standard 1-convex obstacle represen-
tation from section for the red Caterpillar subtree.

2. Next, for each vertex in the blue group that is adjacent to a vertex that is both red and
blue (there can be at most two, v; and v5), draw them so that there exists a line that
puts all red vertices on one side of the line, and both v; (and v,, if applicable) on the

other.

3. Now, if there are n vertices in the spine of the blue caterpillar that are not also red,
draw the second obstacle as the bottom-half of a regular 2n-gon. The top-half of this
obstacle should fall directly on the line mentioned in step 2, and it should ensure that

v1 (and vy) cannot see any red vertex except for the ones adjacent to it.

4. Lastly, return to the technique from section [2.2] to wrap the blue vertices around
the second obstacle, thus completing the construction. An example created by this

process is given below:

Note: vertices A,B, and C are colored both red and blue.
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]

For part (2) of the proof of Theorem 2, we will introduce the process of pruning a
tree using edge contractions. This process consists of two steps: First, all edges incident
to a leaf and a vertex of degree 3 or more are contracted away. Second, all edges that
are incident to the remaining leaves are removed unless doing so would put a leaf vertex
adjacent to another vertex of degree greater than 2. The second step is then repeated until
no more edges can be contracted while satisfying the desired condition. A key observation
here is that the edge contractions in both steps of the pruning process can be replaced by a
series of leaf deletions with the same end result. Thus any pruned tree will be an induced
subgraph of the original tree.

Let 7" be the tree that we started with, and let 7" be the tree we get after pruning. Then
by definition, all leaves in 7" will be adjacent to a joint vertex, which is in turn adjacent to a
vertex of degree 3 or higher. We will refer to these paths of length 2 as claws, mirroring the
term we used in the definition of an n-claw. This leads us to the following Lemma, which
provides a classification for all trees that reduce to the 5-claw.

Lemma 3.12. Any tree ' that is reducible to the 5-claw through a series of edge-contractions
either has the 5-claw, or one of the following two families of graphs as an induced sub-

DO RSAES

where the marked edges denoted paths of length k or m, where k, m > 0. We will refer to
the family on the left as the (4,3) family, and the one on the right as the (3,3,3) family, after

the degree of the largest vertices in each.

Proof. We begin with the following observation about the pruning process defined above.

Observation 3.13. The set of all edges removed from a tree T’ during the pruning process

is a subset of the edges we must contract when reducing T' to the 5-claw.
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This observation makes sense due to the conformation of edges and vertices in the 5-
claw. In the first part of the pruning process, we remove all leaves that are adjacent to
vertices of degree greater than 3, which are not present in the 5-claw. Furthermore, in part
2 we reduced all paths that end in leaves to paths of length 2, which are the only paths that
exist in the 3-claw. Thus in both steps, we never removed an edge that would have appeared

in the final reduced version of our tree.

Now assume that we have a tree T that is reducible to the 5-claw. Let 17 be the tree we
get after pruning 7', and assume that 7} has n vertices of degree 1. Notice that n must be
greater than or equal to 5, since the 5-claw requires exactly 5 leaves. Furthermore, all of
the leaves of 7} are parts of claws. Thus to reduce 77 to the 5-claw, we must remove all of
these claws except for 5 (which can be accomplished either through edge contractions or
vertex deletions). Let 75 be the subgraph of 7} that has only 5 of these claws.

We now claim that 75 must either be the 5-claw, a tree in the (4,3) family, or a tree
in the (3,3,3) family. To see why, first notice that there can be at most three vertices with
degree greater than 2 in 75. All 3 of these vertices v1, v2, and v must be connected, which
gives us a single path that contains all three. We will now build a valid pruned tree 75 from
this path, and show that 75 must be part of the (3,3,3) family. Let v5 be in between v; and
vs in this path. Now, since we want 75 to be a tree reachable through pruning, the only
way to increase the degree of a vertex is to attach a claw to it. Then we can attach a single
claw to both v; and v, in T35, which makes all three vertices have degree 2. But we want
v1, V2 and v to all have degree 3. This can only be accomplished by attaching one more
claw to each, and it follows that the (3,3,3) family of trees is the only possible family with
3 vertices of degree greater than 2. A similar argument can be made for the situation where
only 2 vertices have degree 3 or higher. In this case, we once again begin with a single path
connecting two vertices v; and vo. Adding claws onto each in order to make them both
have degree 3 leaves us with a tree with four leaves. Thus we can only attach one more
claw to either v; or vy, since we assumed that our tree has at most 5 vertices. Both choices
are equivalent by symmetry, and thus the (4,3) family is the only possible family with 2
vertices of degree greater than 2. It follows that any tree 7' that is reducible to the 5-claw
through a series of edge contractions either has the 5-claw, or a tree in the (4,3) or (3,3,3)

families as an induced subgraph, as desired. 0

Theorem 3.14. A tree T has a 2-caterpillar coloring if and only if it cannot be reduced to

the 5-claw by edge contractions.

Proof. (=>) First, assume that a tree 7" has a 2-caterpillar coloring with red and blue col-

ors. Let 7" be the subtree generated by the pruning process described above. Then it must
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be the case that 7" has no more than four vertices of degree 1. This is because pruning a
Caterpillar graph will leave us with a path, as the only leaves that remain after pruning are
the endpoints of the spine. Thus 7" will be the concatenation (with overlap) of two paths,
specifically, the spine of the red Caterpillar and the spine of the blue Caterpillar, which
means it can have at most four leaves. But the 5-claw has 5 leaves, and thus 7" cannot be
reduced to it through edge contractions alone. It follows by observation that 7' cannot
be reduced to the 5-claw, as desired.

(<=) Now assume that we have a tree 7" that does not reduce to the 5-claw by edge
contractions, and assume that it does not have a 2-caterpillar coloring. Notice that we only
need to consider the case where 7' has a 3-caterpillar coloring, as we could reduce any
tree 7" with caterpillar number n > 3 to a subtree with caterpillar number 3. Now, once
again we will let 7" be the tree generated by pruning 7', and note that none of the vertices
removed during pruning could have been part of the spine of any colored caterpillar. Thus
the caterpillar number of 7" will be the same as the caterpillar number of 7', which is 3.
This implies that 7" will have at least 5 leaves. If it didn’t, then it is easy to show that we
could construct a 2-caterpillar coloring using the 4 leaf vertices as the endpoints of each
spine. For this proof, we will assume that 7" has exactly 5 leaves. If it had more, we could
once again reduce 7" to 5 leaves through a series of edge contractions. But we know by
Lemma [3.12] that the only trees that have 5 leaves after pruning are the 5-claw itself, or
the trees in the (4,3) and (3,3,3) families. However, all of these trees are reducible to the
S-claw, which is a contradiction. It follows that any tree that is not reducible to the 5-claw

through edge contractions must have caterpillar number at most 2, as desired. [

Finally, we arrive at part (3) of our proof of Theorem 2. This portion of the proof is
a lot more involved than the previous ones, but is nevertheless pretty straightforward once

we reduce the number of cases that need to be considered.

Theorem 3.15. Any tree that reduces to the 5-claw through edge-contractions has convex

obstacle number at least 3.

First, recall that the only trees that reduce to the 5-claw have either the 5-claw itself
as an induced subgraph, or a tree in either the (4,3) or the (3,3,3) families as an induced
subgraph. As we have already proven that the 5-claw does not have a 2-convex obstacle
representation, we only need to show that neither the (4,3) nor the (3,3,3) families can be
represented using only two convex obstacles. To do this, we will return once again to the
idea of the obstacle convex hull and the inner face of a set of two obstacles. Recall that

the inner face is the area of the obstacle convex hull that is not covered by the obstacles.
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Also recall that the obstacle convex hull must have exactly two sides, as otherwise the
obstacles would overlap. For this proof, we assume that both the (3,3,3) and (4,3) families
have a 2-convex obstacle representation, and find a contradiction in each case. We begin by
recapping what we already know. First, we know that there cannot be a 3-claw contained
entirely within the inner face. We also know that a 3-claw cannot be entirely outside of the
convex hull either. For general trees, this is all we know so far, but in the particular case
of the (4,3) and (3,3,3) families, we know more about the structure of the trees we want to
represent, which allows us to be more specific about what cannot be found within the inner

face. In particular, we will prove the following Lemma:

Lemma 3.16. In any 2-convex obstacle representation of a tree T in the (4,3) or (3,3,3)
families defined above, no vertex of degree 3 or more in 'I' can be inside the inner face of

the obstacles.

Proof. To prove this claim, first notice that it is sufficient to prove the case where a vertex
has degree 3, since we can reduce a vertex’s degree through a series of vertex deletions.
We will let v3 be the vertex of degree 3 in the tree 7' that we are considering. Now, notice
that if v3 is in the inner face, then there must be at least one edge crossing through a side
of the obstacle convex hull, as otherwise all of 7" would be inside the inner face, which is
not possible. Furthermore, there cannot be more than 3 paths that start at v3 and exit the
inner face, as then we would have a cycle. This is because any two vertices that are on
the outside of the obstacle convex hull must see each other if they are incident to vertices

within the inner face, as shown in the diagram below:

Inner Face

A similar argument can be made if we have only two paths, both of which start at v
and then pass through the same side of the inner face. Thus there can be at most two paths

from v3 that exit the inner face, and no two of these paths can exit the inner face through
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the same side of the obstacle convex hull. Thus we either have only a single edge leaving
the inner face, or a pair of edges that exit through opposite sides. We will show that no

matter which of these situations we are in, we will run into a contradiction.

1. First, assume that there are two paths that start at v3, and then exit the inner face on
opposite sides. Then these paths divide the inner face into two disjoint regions, each
of which can only contain one of the two obstacles. Now, since 7" is a member of the
(3,3,3) or (4,3) families, there must be a third path of length 2 that starts at v and
never leaves the inner face. Let v; and v, be the vertices adjacent to v3 that are not
part of this path. Then the triangle Av;v,v3 must lie in exactly one of the disjoint
sections of the inner face. Furthermore, Lemma [3.2]ensures that the path of length 2
is contained in the same region as our triangle. But this means that we have only one
obstacle to represent a path of length 2 that is at least partially contained within the
triangular region Awv,v9vs. This contradicts Lemma and tells us that we would
need a third obstacle in our representation, as desired.

2. Now, assume that only a single edge exits the inner face of our obstacles. Again we
can infer that the remaining two paths that start at v3 have length 2, and are contained
entirely within the inner face. But the structure of the (3,3,3) and (4,3) families of
trees implies that the path which exits the inner face also contains at least 2 edges,
and thus we have the 3-claw as an induced subgraph. By deleting all other vertices
in our tree 7" except for those in these three paths of length 2, we should be left with
a valid 2-convex obstacle representation of the 3-claw. We will now show that this
cannot be the case, no matter how we arrange the vertices of our claw. The set of all

such configurations can be partitioned into two cases, which we describe below.

a. First, assume that the path which leaves the inner face is not incident to the root
vertex v, in the convex hull. Let v, vo and v3 be the vertices directly adjacent
to the root vertex v,., and let v5, v4, and vg be the leaf vertices adjacent to vy, vy
and v3, respectively. If the path v,v3v,4 is the one that originates inside of the
convex hull, then by assumption this is the path that exits the obstacle convex
hull. This implies that v3 and v, are the only vertices that may be outside of the
inner face. That is, all other vertices of T’ must be inside the inner face. We will
show that this cannot be the case. To see why, notice that the path v,.v3v, divides
the convex hull of 7" into two sections, each of which must contain exactly one
of the convex obstacles. This follows because no line can be drawn from a point

on the non-edge v,v5 to a point on the non-edge v, vg without intersecting the
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path v,v3v4, as shown in the figure below, where the horizontal line that divides

v3v4 denotes a non-edge in the obstacle convex hull.

Thus the convex hull of the tree S = 7" — {v3, v4} contains both obstacles, and
from Lemma [3.9] we have that some vertex of S is not contained within the
inner face of the obstacles. But we assumed that all of the vertices of S were

inside the inner face, and thus we have a contradiction.

b. Next we consider the case where the path that leaves the inner face is incident
to the root vertex in the convex hull. That is, if the path v, vovg from the labeling
above now leaves the inner face, then the edge v,.v, is part of the convex hull of
T'. If the path v,v,v5 is the other such path, then by Lemma the combined
path from v5 to vg is a strictly convex path that starts inside the inner face, and

ends outside, as shown in the diagrams below:

\
\\
\./
\
V6

In the figure on the left, we see that it is the edge vsvg that leaves the inner
face, while in the figure on the right the edge v,v, leaves the inner face, and
vovg 1s not pictured. We will condition on which of these two edges is the one
that actually exits the inner face, and the argumentation in each situation will be
very similar. In the first case, consider the ray L formed by extending the edge

vovg in the direction of v,. Next, let region R be the area of the convex hull of



29

3 Trees with Convex Obstacle Number 2

our path formed by sweeping ray L from the direction of v, either clockwise
or counterclockwise along the edges of this strictly convex path until moving
L any further would cause it to not intersect any of the edges in our path. The
non-edges drawn in the above diagrams highlight this region R in either of the
two cases. Notice that the vertex v need not be on the convex hull of this path,

as the left figure shows.

We now claim that only one obstacle can be found inside the highlighted region.
To see why, let e be the non-edge in the convex hull of our obstacles that crosses
vovg. Then both obstacles must intersect e. Let p; be the point of intersection
for the first obstacles and let p, be the point of intersection for the second. since
the path from v5 to vg is strictly convex, if there is a line from p; to R that does
not cross any edges of our tree, then there cannot be such a line from ps to R.
It follows that there cannot be any two non-edges inside R that require separate
obstacles, as only one of the two obstacles can exist within this region. This
means that the third path v,v3v4 cannot be entirely contained within R, as then
a familiar application of observation gives us two non-edges that require
different obstacles. Likewise, if the path v,v3v, leaves region R, but one of the
vertices (say vs, but this argument also works for v4) remains in R, then the two

non-edges v1v3 and vov3 in R will require distinct obstacles.

Thus we are left with the situation where both v3 and v, are outside of R. Here
we cab define a second region 7, as the area formed by taking our original ray
L and sweeping it along the path from vz to v3. Following the argument for
region 2 above, we know that only one obstacle can be found in region R,
and this obstacle must be the same as the one in R. However, the path v,v3v,4
separates the two regions, and since our obstacles are convex it is impossible
for the same obstacle to occupy both regions, which gives us our contradiction.

This situation is illustrated in the figure below:
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The highlighted non-edges require separate obstacles

We now return to the second case mentioned above, where the edge that leaves
the inner face is v,v9 instead of vovg. Notice that this situation is almost iden-
tical to the previous one, except we now extend ray L along the edge v,v5 in
the direction of v,. But this still allows us to define our regions R and R,
and thus following the logic from the preceding argument gives us the same

contradiction, which we illustrate below.

The highlighted non-edges require separate obstacles

Since both of these cases lead to contradictions, this completes the proof of Lemma
]

We now return to the proof of Theorem We know from Lemma that all of
the vertices of degree 3 or greater must be outside of the inner face. However, we also
know that there must be something inside of the inner face, as otherwise we would have a
I-convex obstacle representation of our tree, which is not possible. Thus the only possible

candidates for what can be inside the inner face are leaves and joints.
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Now, it is easy to see that in both the (4,3) and (3,3,3) families of trees, having only
one edge entering the inner face will force a 3-claw to exist either outside or inside of
the obstacle convex hull. This is because it is impossible to remove a single edge in either
family and be left with a forest of two Caterpillars. Similarly, no two edges can be removed
to leave us with a forest of three Caterpillars. It follows that there must be three edges in T’
that cross into the inner face of our two obstacles. By the pigeonhole principle, we know
that two of these edges enter the inner face through the same side. Thus for the proof of
Theorem [3.15] we will condition on these two edges, and show that no matter how they are

arranged in a given configuration, we will always run into a contradiction.

Proof of [3.15] We begin by considering the situation where our two edges are incident to
distinct vertices outside of the obstacle convex hull. Let v; and v, be the vertices inside the
inner face that are adjacent to vs and v, on the outside. Assume without loss of generality
that v, and v3 are to the left of v, and v, in our 2-convex obstacle representation. Let e be
the non-edge in the obstacle convex hull that crosses the edges v,v4 and vov3. Then both
convex obstacles must touch e, and by observation the left obstacle cannot touch the
non-edge vyv4, while the right obstacle cannot touch the non-edge vov3, as shown in the

diagram below:

This means that the left obstacle must cross v,v3 and the right obstacle must cross v;v,.
However, if the right obstacle crosses v;v,4, then there is no line from the intersection of
the left obstacle and e that passes through vov3 without touching v,vs. Likewise, if the left
obstacle touches vov3, by symmetry, there is no line from the intersection e and the right
obstacle that touches v, v, without crossing the edge vsv,. It follows that the two edges that

cross the same side of the inner face must both be incident to the same vertex.
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Now let v, be the vertex outside of the inner face to which both edges are incident. We
will continue the labeling scheme from above by letting v; and v be the vertices adjacent to
v, within the inner face. Now we know that v; and v, cannot both be leaves, since no such
configuration exists in either the (4,3) or (3,3,3) families. Thus one of these two vertices
must be a joint, and without loss of generality we will assume that v, is a leaf adjacent to
vy, and that vy is a leaf. Then again by the configuration of the (3,3,3) and (4,3) families of
trees, it must be the case that v,. is a joint vertex. But this means that v must be a vertex of
degree greater than 2, which contradicts Lemma [3.16]

It follows that neither v; nor v, can be leaf vertices, and so there must be two vertices
vs and vy that are adjacent to v, and v, respectively, so that v3 and v, are leaves while v,
and v, are joints. Then without loss of generality, we know that exactly one obstacle can
touch the non-edge v3v,. This follows because observation [2.1|ensures that only one of the
obstacles can be inside triangle Av,v,v3, as both v,v5 and v,v3 cross one side of the inner
face. However, the convexity of our obstacles implies that the same obstacle that blocks
v9v3 must also touch the non-edge v,v3. But no matter where this non-edge is located,
observation [2.1| once again tells us that v,v3 cannot be blocked by the same obstacle that

blocks v9v3, as illustrated in the following two diagrams.

Thus we have shown that two paths of length 2 cannot enter the inner face through the
same side of the obstacle convex hull for any tree in the (4,3) or (3,3,3) families. However,
this means that there must be a 3-claw outside of the inner face, which is a contradiction. It
follows that neither the (4,3) nor the (3,3,3) families of trees have a valid 2-convex obstacle
representation, as desired. This completes the proof of Theorem [



33 4  Additional Results

4 Additional Results

4.1 An Infinite Family of Bipartite Graphs

One topic that has been investigated by many in the world of obstacle representations is
the question of which graphs have obstacle number 1. As explained in the introduction,
this question is well understood for many families of graphs. However, constructions for
such graphs with obstacle number 1 have not been addressed directly. In this section,
we study the particular case of bipartite graphs, and we identify two infinite families of
bipartite graphs that have obstacle number exactly 1. In our results, we also take the next
step and identify a construction that will generate a 1-obstacle representation given any
bipartite graph in our families. Note that in this section alone, we allow our obstacles to be

non-convex.

Theorem 4.1. Any bipartite graph with a partite group of size 3 has obstacle number 1.

Proof. Consider a bipartite graph GG with independent sets .S and 7" that is a subset of the
complete bipartite graph K3,. Let S denote the independent set of size 3 and 7" denote
the independent set of size n. Now consider an arrangement of the vertices in G in which
all vertices in the same independent set are positioned on the same line in a plane, and the
lines for each set are parallel to each other. Notice that in this configuration, the complete
graph K3, has obstacle number 1, as all non edges between vertices in the same partite set
can be blocked with a single obstacle in the outside face of the graph. We will prove that
this obstacle can be altered so as to generate a 1-obstacle representation for any choice of
G. First, it is easy to see that any non-edge that is incident to the right or leftmost vertex in
a partite group must touch the outside face. Since our obstacle exists in the outside face, it
follows that we can use this obstacle to block any of these non-edges. This just leaves the
non-edges incident to the center vertex v, in S. To show that one obstacle is sufficient to
cover these, we will order the vertices in 7' so that every vertex that is adjacent to v, is to
the right of all vertices that are not adjacent to v.. With this division, we see that all of the
non-edges will be the leftmost edges incident to the center vertex in S, and therefore they
can all be blocked by our one obstacle. This completes the proof that the obstacle number
of G is 1, for any choice of G. O
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Note: All non-edges touch the outside face of G

Theorem 4.2. Any bipartite graph with a partite group of size 4 has obstacle number 1.

Proof. Consider a bipartite graph GG with independent sets .S and 7" that is a subset of the
complete bipartite graph K, ,,. Let .S denote the independent set of size 4, and let 7" denote
the independent set of size n. We will provide a configuration for these vertices in the plane
that must have obstacle number 1. To begin, choose 3 of the 4 vertices in S and create the
configuration from Theorem 4.1l We will let v, v, and vg denote the vertices of S we
chose in order from left to right. Notice that this subgraph of GG will have obstacle number
one. Let v* denote the one vertex in S that was left out from our construction. We now
arrange the vertices of 1" into two groups: group 1 contains the vertices that are adjacent
to v, and group 2 contains all vertices that are not adjacent to v. Within each group, we
can rearrange the vertices without changing the number of obstacles required, so we can
move all edges from group 1 to the rightmost legal position, and we can move the edges
from group 2 to the leftmost legal position (where a legal position here is one in which the
construction conditions from Theorem are met). In this updated configuration, we see
that the non-edges of v* are incident to the rightmost and leftmost vertices in group 1 and
2, respectively. That is, the neighbors of v* are all next to each other in our representation.
It follows that we can extend our outside obstacle on both sides of v* to cover these non-

edges, and thus G has obstacle number 1, for any choice of G. O
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Note: All non-edges touch the outside face of G

4.2 An Extension of Outside Obstacle Representations

An interesting question that remains open is whether or not all planar graphs require an
outside obstacle representation, that is, a representation in which all obstacles touch the
outside face in the drawing of the graph. With respect to the convex obstacle number of
trees, the concept of outside obstacles does not directly translate, as without crossings any
obstacle will touch the outside face since its the only face of the tree.

We will instead consider a related problem, which is whether every convex obstacle in
the representation of a tree 7" exists outside the convex hull of 7. In other words, does
there exist a tree 7' that requires an obstacle entirely contained within the convex hull of 7.
Clearly when we have only one obstacle, it must touch outside the convex hull, as the hull
must contain a non-edge that is blocked by the obstacle. When we consider two obstacles,

however, we get the following result:

Theorem 4.3. In any 2 convex obstacle representation of the 4-claw, one obstacle must be

entirely contained within the convex hull.

Proof. We begin by appealing to Lemma (3.4] which tells us that our tree 7" must have only
a single non-edge in its convex hull (since n = 2 which is the number of convex obstacles
we are working with). Furthermore, we can conclude that the root vertex must be on the
convex hull. This follows from repeated applications of Lemma [3.5|on all possible 3-claw
subgraphs of the 4-claw. Finally, Lemma proves that v,, must be adjacent to both of
its neighbors in the convex hull of 7'. This tells us that there must be two paths of length
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two completely contained within the convex hull, which significantly reduces the number
of cases we must condition on.

We now consider the arrangement of these two interior paths. First, notice that we can
eliminate any situation in which a subgraph of 7" has a 3-pinwheel representation, as such
a situation would require three obstacles. We also know that deleting a single claw in our
representation of 7" must give us a valid representation of the 3-claw (which, by Lemma[3.6]
is a representation in which the root is adjacent both of its neighbors in the convex hull).
Thus the only valid 2-convex obstacle representations of the 4-claw are those in which a
line through the root vertex v,. separates the 4-claw into two pinwheel representations, such

as the configuration in the figure below.

We will now show that there is no way to arrange two convex obstacles in a represen-
tation of 7" so that both of them touch the one non-edge in the convex hull. We condition
on whether or not the non-edges v,.v5; and vsvg are blocked by a single obstacle. The key
observation is that, in either case, the obstacle divides the interior of the convex hull by
touching the non-edge in the convex hull. This necessitates that the other obstacle is either
entirely to the right, or entirely to the left of this first obstacle, since it must also touch the

same convex hull non-edge.

1. If a single obstacle touches both the non-edges v,.v; and v,vg, we would need two
convex obstacles to cover both the non-edges v;v, and vsvy, which gives us our

contradiction.

2. If each obstacle touches exactly one of these non-edges, then we also get a con-
tradiction. We’ll say without loss of generality that the first obstacle intersects the
non-edge v, vg, but not v,v5. Then we see that the other obstacle must intersect both

v-v5 and v3vy, which is impossible.
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Thus we have eliminated all cases where both obstacles touch outside the convex hull,
and it follows that there must be a single obstacle completely contained within the hull, as
desired. [

The structure of this proof allows us to take a step further, and make the following

claim.

Corollary 4.4. In any 2-convex obstacle representation of the 4-claw from Theorem{d.3) the
obstacle that is completely contained within the convex hull must touch both the non-edges

v, U5 and v, vg.

Proof. First consider what happens when the interior obstacle touches only one of the non-
edges, say v,v5 without loss of generality. Then the other obstacle must touch both the
non-edge v, vg and the non-edge in the convex hull. However, by case 2 in the proof of
Theorem [4.3] we see that this leads to a configuration that requires 3 obstacles, which is a
contradiction. A similar argument can be made if we say that the interior obstacle does not
touch either non-edge, as then we enter case 1 in the proof of Theorem @ in which the
other obstacle must touch both of these non-edges as well as the one in the convex hull. If
we allow the interior obstacle to touch both v, v5 and v, vg, however, then we can create the

following legal 2-convex obstacle representation:

This completes the proof of Corollary O

4.3 Alternate Proofs of Theorem 1

After we introduced the new preliminaries in section 3| it became clear that there were

simpler proofs of Theorem 1 that made use of the Lemmas from that section. For example,
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our original proof that the 3-claw has convex obstacle number 2 can be reduced to the fol-

lowing:

New Proof of Theorem 1. Consider any 1-convex obstacle representation of a 3-claw 7'.
By Lemma we know that all neighbors of the root vertex v, must be on one side of
a line through v,. Let v, v9, and v3 be these neighbors in counterclockwise order about
vy, and let v4 be the leaf vertex adjacent to v3. Then v,v3vy is a path of length 2 that must
be at least partially contained in triangle Av;v,v,, and it follows from Lemma 2.3| that the

3-claw does not have convex obstacle number 1, as desired. U]

With this argument and our construction of a 1-convex obstacle representation for
Caterpillar graphs in section we have a more succinct and elegant proof of our first
main result. However, it turns out that we can derive a direct proof of Theorem 1 that does
not require a construction or consider the 3-claw at all. This proof follows nicely from the

following pair of observations, which are useful restatements of earlier Lemmas.

Observation 4.5. In any 1-convex obstacle representation of a tree T, If vy, vo, v3, and vy
are any 4 vertices of I in non-convex position (say vy is in the convex hull of vy, v9, and v3)

then vy is adjacent to at most one of vy, Vs, OF V3.

This new observation follows from a familiar observation in section [2| If v, were ad-
jacent to two other vertices, say v; and vy, then observation tells us that the non-edges
v1vo and vgv, require separate convex obstacles, which is a contradiction. Our second ob-
servation is similar to this last one, except now we consider what happens when all four

vertices are in convex position.

Observation 4.6. In any I-convex obstacle representation of a tree T, If v, vy, v3, and vy
are any 4 vertices of 'I' in convex position, ordered clockwise about a point within their

convex hull, then neither diagonal v,v3 nor vov, forms an edge inT'.

Once again this observation is easy to verify, as it follows from Lemma If one
of these diagonals, say v;vs3, were an edge in our tree 7', then the convex hull of the four
vertices would contain four non-edges, namely v1v2, v2v3, Usv4, and v4v;. By Lemma|2.6]
all but one of these non-edges must actually be an edge, but there is no choice of three
edges in this set that does not create a cycle with vyv3. This gives us our contradiction, and

it follows that neither diagonal can be an edge in 7', as desired.

With these two observations, we can now formalize our proof as follows.
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Direct Proof of Theorem 1. Consider any 1-convex obstacle representation of a tree 7". By
Lemmal|2.6] there must be exactly one non-edge in the convex hull of 7', which implies that
the vertices vy, v, . . ., v; on the hull form a path. Now for all k € [2, k), consider the trian-
gular region formed by vj,_1, v4, and vj4;. By observation#.6|above, we know that no edge
that is incident to a vertex in Avg_1v,vk41 can cross the non-edge vy, 1. Furthermore,
observation tells us that there cannot be a path of length 2 inside Avy_jv,v1. Thus
every vertex vy in the convex hull of 7" can only be adjacent to leaves and other vertices in

the convex hull. It follows that 7" must be a Caterpillar graph, as desired. [

4.4 Obstacles with Dents

Our final section of additional results was born from questioning of the power we gain
by moving slightly further away from the convex obstacles we have been using almost
exclusively in this paper. To formalize this idea, we let a dent in a convex obstacle be a
triangular region in the convex hull of the obstacle in which the triangle shares exactly two
vertices with the polygonal obstacle, while the third vertex can be found inside the convex
hull. We say that an obstacle has n dents if it has n such triangles within the obstacle’s
convex hull such that none of them overlap. We are interested in studying what kinds of
trees have representations that require a single dented convex obstacle. We define such
an n-dented obstacle representation as a representation of a tree 7" in which all non-edges
are blocked by a single convex obstacle that contains n dents. To this end, we have the

following Theorem:

Theorem 4.7. A tree T has a 1-dented obstacle representation if and only if it is a Cater-

pillar graph, or a Caterpillar graph plus a path of length 2.

Proof. First, notice that any vertices inside of a triangular region that does not contain any
obstacles must form a clique. This means that the total number of vertices that can be
inside the triangular region formed by a dent is two, since we are only considering graphs
without cycles. We now want to prove that these vertices must form a path, that is, one of
the vertices is a leaf, and the other has degree 2. We proceed by contradiction. Let the dent
of our obstacle be formed by the vertices A,B, and C' in the polygonal obstacle, with A
being the vertex on the interior of the convex hull of the obstacle. Now assume that the two
vertices v; and vs inside the dent both have neighbors outside the indented triangle. First,
notice that it must be the case that v; and vy do not share a neighbor, as if it did we would
have a cycle. Furthermore, the neighbors must both be above the line BC, as otherwise

they would not be visible to v; and v, inside the dent. However, as the following figure
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shows, this means that the neighbors of v; and vy can see each other, which means they
must be connected. This also creates a cycle, which leads to a contradiction. A similar
argument can be made if we assume that a single vertex inside the dent has two neighbors

outside the dent, and it follows that the dent can only contain a path of length 2.

To complete the proof, consider the subgraph S = T — vy, vy. Notice that, since v,
and v, are the only vertices in triangle AABC, it must be the case that S has a 1-convex
obstacle representation, since all non-edges of S must be blocked by the convex hull of our
obstacle. It follows that S is a Caterpillar graph, and that 7" is a Caterpillar graph with at
most one extra path of length 2, as desired. [

5 Conclusions

In this thesis, we found necessary and sufficient conditions for a tree to have convex obsta-
cle number 1 or 2, but there is a lot of work left to be done. First, categorizations for all
trees with convex obstacle number 3 and 4 still need to be found, an endeavor that is likely
to prove challenging due to the possibility of including edge-crossings in representations
with more than 2 convex obstacles. A natural conjecture to make is that convex obstacle
number 3 implies Caterpillar number 3, and vice versa. However, this is unlikely to be the
case, as most of the results used in the paper do not generalize to situations where edge-
crossings are allowed. This means that a proper investigation along this line of research

would require almost an entirely new set of Lemmas and restrictions.
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Another question that arose during this project that may be worth exploring is the effect
of edge contractions and edge deletions on the convex obstacle number of a tree. In our
research, we noted that reduction to the 5-claw through edge-contractions was a necessary
condition for a tree to have convex obstacle number 3 or greater. Earlier in the investiga-
tion, however, it was hypothesized that having the 5-claw as a graph minor was the proper
characterization, but we were unable to prove anything in general about edge contractions
and deletions, even though the effect of vertex deletions is well understood.

Lastly, a few interesting questions can be drawn from the additional results portion
of this thesis. Of particular interest is the consequences of allowing dents in a convex
obstacle. So far we only understand the power of triangular dents, but what about dents of
other shapes? That is, dents in which more than one vertex can be found on the inside of
the obstacle convex hull. At what point does allowing such dents make a single obstacle
more powerful than k£ convex obstacles? Since we know that a single polygonal obstacle
can represent any tree, there must be some minimum number of perturbations that need to
be made to a convex obstacle before it can represent a given tree 7'. We believe that the
study of dented obstacles may provide some insight into what types of perturbations are

required to make trees have obstacle number 1.
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