
Applying Artificial Neural Networks to Playing Go

Simon Chase, Philippe Demontigny, Daniel Seita

December 13, 2013

Abstract

The game of Go is an extremely difficult problem for computers to solve, even when con-
sidering the 9x9 setting. Common AI game search techniques fail due to the enormous branch
factor in these games: there are few restrictions on where a player can place a stone. In addition,
human professionals may rely on concepts difficult to encode in a computer program. In our
final project for CSCI 373, we created a 9x9 Go AI, which we name KamiGo, using the machine
learning algorithm of artificial neural networks. We explain our methodology, the feature vectors
constructed, and our AI’s performance results.

1 Introduction to Go

1.1 Basic Rules

Go is a centuries-old, two-player, deterministic, zero-sum game with perfect information. Players
control either black or white stones and alternate placing them on a grid. The official game board
has 361 possible locations, arranged in a 19x19 square, but smaller versions are also used by players
who are learning the game. In this report we will only focus on the 9x9 setting, which is the smallest
board used regularly in professional play. The objective of Go is to capture territory by surrounding
more spaces on the grid than the opponent. To surround an area is to completely enclose a section
of the board with a group of stones. Stones form groups when they are placed directly adjacent to
each other. Each empty location adjacent to a stone is called a liberty. As long as stone has one or
more liberties, it is alive. Groups of stones of the same color share liberties, but if all of a group’s
liberties are occupied by opposing stones, that group is captured and removed from the board. See
Figure 1 for an example of when black stones capture an opponent’s white stone.

Figure 1: A move that results in the capture of a white stone.

Although the basic rules of Go are provided here, there are a few important concepts that are
left out for the sake of brevity. The reader is encouraged to consult the multitude of references
existing in print and online.

1



1.2 Go-Playing AI

Go is a difficult problem for computers to solve; indeed, it has recently been recognized as the “Holy
Grail” for computer game playing due to its massive branching factor and difficult evaluation
function [Low, 2008]. Even when considering the smaller 9x9 setting, it is only recently that
programs have been able to reach a professional level. Evaluation functions to produce a heuristic
for Go-playing AIs are challenging to implement since the best human players rely on concepts
difficult to encode in programming (e.g., potential for an area to be live or dead), and because
there are many local moves that can have unforeseen long-term effects.

One of the first successful attempts at creating a artificial intelligence for Go was one that
stored and drew upon vast stores of data based on professional and conventional knowledge of the
game itself. The most successful of these programs was called “The Many Faces of Go,” which used
a very large pattern database, an opening move dictionary, and a rule-based territory evaluation
function, among other things [Fotland, 1993]. While this program was the strongest of its kind, it
was not strong enough to beat pro-ranked players.

The next generation of computer Go programs made use of artificial neural networks, described
in Section 2. The most widely recognized of these are NeuroGo [Enzenberger and Cazenave, 2003]
and HonteGo [Dahl, 1999]. The success of these players can be attributed to the fact that many
of them incorporated a knowledge-based agent that was able to override the decisions made by the
neural net if a more obvious move was available [Enzenberger, 1996]. However, it cannot be said
that neural networks were a strong improvement over the more widely used commercial programs,
as NeuroGo and its cousin HonteGo were still unable to defeat even the lowest ranked pro players.

The world of computer Go dramatically changed when programs starting using Monte Carlo
simulation to determine their moves. These programs were the first that were able to compete at the
pro level, although the best versions could still only beat the lowest ranked professionals [Low, 2008].
Most of the currently maintained programs use this method, including Fuego (described in section
3.4) and the program MoGo [Gelly et al., 2006], which has successfully defeated mid-ranked pros
on a 9x9 board (although not consistently).

2 Artificial Neural Networks

We used artificial neural networks to train a Go-playing AI. Artificial neural networks (ANNs) are
a commonly-used machine learning algorithm motivated by biological systems. The smallest unit,
the perceptron, tries to simulate the behavior of a single neuron: the perceptron takes in a series of
inputs, each drawn from the output of a previous perceptron, and computes a single output value.
By connecting several stages of perceptrons together, an ANN tries to mimic complex systems of
interconnected neurons. Of course, real neural networks (e.g., the human brain) are made up of a
far greater number of neurons, with each having a far greater number of connections than the ANN
perceptron might. But it turns out that ANNs are excellent learners for problems in which training
data may be noisy and complex, and when the classification may be highly nonlinear. ANNs are
commonly applied to problems involving inputs from cameras and microphones, such as teaching
a robot how to steer a car [Mitchell, 1997].

ANNs are built out of a series of densely connected layers of nodes. Their structure can be
described as a series of two complete, bipartite graphs. Each node in the input layer forwards its
output to each node in the hidden layer. Likewise, each node in the hidden layer forwards its output
to each node in the output layer. We refer to each node as a unit, which takes some set of inputs
and computes an output. For a node in the input layer, its output is simply its input. For a node
in the output and hidden layers, its output is the result of a function computed over its inputs.

2



Figure 2: An artificial neural network, including a bias term.

Figure 2 is an example of an ANN with an input layer of n nodes, which corresponds to the
n-dimensional vector of some element in the training data. There is a hidden layer consisting of q

nodes, and an output layer of m nodes. Each hidden node zi has its own weight vector w
(1)
i , and

we compute its output (call it out(zi)) by taking the weighed sum of the input values and then
apply the sigmoid function σ.

out(zi) = σ

 n∑
j=0

wjxj

 =
1

1 + e−
∑n

j=0 wjxj
.

The values for the output layer are computed similarly, only this time the function takes as
input the output of the hidden layer’s nodes.

In this particular application to Go-playing AIs, we use a single node to form the output layer.
The input to the neural net is formed from a view of the board around an empty spot, with the
output being the strength of placing a stone in that particular spot. The higher the score, the better.
In our training, we set the number of hidden nodes to be ten, though an obvious continuation of
this experiment would be to test our ANN with different amounts of these nodes.

To train an ANN to learn ideal weights, one can run the Backpropagation Algorithm. For
a single round of training, the algorithm takes a set of inputs and a target value (what we wanted
the ANN to output in an ideal circumstance), and modifies the tree (ever so slightly) so that it
conforms more closely to the desired target output for that particular input. For a single round of
training, the backpropagation algorithm will:

• Propagate the input forward through the network.

• For each node, compute its error term based on the target output value.

• Update each network weight.

The last two steps above are known as the “Backpropagation step” since the errors are propa-
gated backwards through the ANN. We will refrain from listing the technical details; for that, we
refer the reader to [Mitchell, 1997]. In our neural net, we use an array-based implementation to
simulate the behavior of the Feed-Forward Tree described in [Mitchell, 1997].

3



3 Our Contribution: KamiGo

The contribution of our project is that we have constructed a Go-playing AI that computes its
moves based on a trained ANN. Thus, given a current game state, our AI will iterate through all
possible empty board spaces, compute the given feature vector that would result from playing the
move, and then compute the score of it from the ANN. The move that has the highest result is
thus chosen.1 We can play games on the command line (we did not construct or use a GUI) by
alternating between a human playing black and the computer playing white, or we can have the
computer AI suggest any move for either player in any situation.

3.1 Obtaining Game Records and Setting Transcripts

In order to even think about using ANNs, we needed to obtain training data in the form of feature
vectors plus an output, i.e., {(x1, y1)), . . . , (xn, yn)}. For this, we used an online repository2 of 9x9
professional Go games. Fortunately, the games we found were all in the same Smart Game Format,
a computer file format for storing records of board games. We copied over the records of 183 games
into a file and then wrote code to produce transcripts for each game.

We define a transcript of a single Go game to be a list of strings, which consists of the board
state, followed by the given move, followed by the updated board state, then the next move, and
so on. The strings representing the board state consists of 81 letters, either E, B, or W, representing
board states that are empty, occupied by a black piece, or occupied by a white piece. The following
text shows the first six lines of a possible game transcript. The strings representing boards first list
the nine spots in the first row, then the nine spots in the second row, and so on. Moves are of the
form PXY, where P indicates either black or white, and X and Y represent the coordinates. These
moves needed to be interpreted from the system used to store game records in .sgf files. Their
coordinate systems uses the letters a through i to represent rows and columns.

E E E E E E E E E E E E ...

B00

B E E E E E E E E E E E ...

W11

B E E E E E E E E E W E ...

B73

...

While we had the full record of moves from the Go game files, they did not include a way to
compute the board configuration, and that is difficult to code due to the process of capturing pieces.
Thus, to assist us in this last step, we used Fuego, discussed in Section 3.4. This allowed us to
obtain transcripts for all 183 games, which meant that one major step of the preprocessing was
already done before training started.

3.2 Setup and More Pre-Processing

We also define our coordinate system to be as follows: 0 to 8 for the x-axis, and 0 to 8 for the
y-axis, with the (0, 0) point on the upper left hand corner. Moves (x, y) are thus defined as going
across by x and going down by y. Figure 3 represents a possible board state by our Go program.

1Technically, we should only consider legal moves. Unfortunately, we were unable to completely finish this aspect
of our project. Our plan was to use Fuego (see Section 3.4 for details) for this purpose.

2http://gobase.org/9x9/

4

http://gobase.org/9x9/


0 1 2 3 4 5 6 7 8

0 E E E E E E E E E

1 E E E E E E E E E

2 E E E E E E E E E

3 E E E E E E E E E

4 E E W E B E E E E

5 E E E E E E E E E

6 E E E E E E E E E

7 E E E E E E E E E

8 E E E E E E E E E

Figure 3: A possible board configuration using our coordinate and labeling system. Here, both
black and white have placed one stone on the board. This is the kind of output one gets from our
program after any move, or if one types showboard.

Here, E represents an empty board spot, and B and W represent board positions occupied by black
and white pieces, respectively. In this particular state, black has played in the center spot (4, 4),
and white has countered with (2, 4).

With our own coordinate system made clear and the transcripts set up, the next step was
preparing our ANN code. For this, we modified Simon Chase’s old backpropagation code he wrote
in CSCI 374 to make it suitable for our problem and to add in the extra bias term we desired.

We also needed to agree on the features to use, and the parameters of the ANN. For this, we
selected the following set of attributes:

• 10 hidden nodes (not including the bias)

• 42 input nodes based on features (not including the bias)

• One output node, indicating the strength of a move on a 0-to-1 scale

• Stopping criteria of 100,000 iterations for each game

• A constant learning rate of 0.1

3.3 The Feature Vector

The interesting part about our ANN is the way we designed our feature vector, which consisted
of 43 binary-valued components (the bias term is always one). Most of these — 36 to be precise
— come from “influence,” which is based on features used by the Honte Go AI [Dahl, 1999]. For
a given move choice, we chose to look at all spots that were of Manhattan distance 2 from the
move choice (not including the move choice itself). This gave us 12 spots, which we numbered one
through twelve. This representation is similar to the one utilized by HonteGo, except they used 36
spots instead of our 12. An example of this input scheme can be found in Figure 4.

To actually construct features from these, we look at each of our 12 spots and associate to it a
three-tuple of values. If the spot has a black piece, we assign it as [1,0,0]. If it’s white, we assign
it [0,1,0]. Finally, if it is empty or if it is not a legal board state (i.e., it is off the edge of the
map) it is [0,0,0]. We concatenate all these together to get 36 features.

We also wanted to take into account the location of each move relative to the edges of the board,
and the number of moves that have been played. These variables help to establish where and when
a move is to be played, since our 12-space system is limited in this regard.

5



Figure 4: One possible example of a way to determine features for a given board state and move.

• We had three features based on whether a given move was at the center, edge, or corner
regions. The 37th, 38th, and 39th input values were set to [1,0,0] if the move was in the
center region, [0,1,0] if it was in a non-corner edge region, and [0,0,1] if it was in an edge.
These are the three major territories in any sized Go board, and it is commonly said that “in
Go, the corners are gold, the edges are silver, and the center is bronze.”

• The final three features were based on whether a given move occurred in the first 10 turns
of the game, during turns 11 through 40, or beyond turn 40. The 40th, 41st, and 42nd input
values were set to [1,0,0] if the move occurred in the first 10 turns, [0,1,0] if it occurred
between turns 11 and 40 (inclusive), and [0,0,1] if it occurred on turn 41 or beyond. These
time periods separate out the early, middle, and late game, respectively.

Concatenating the 36 influence features, the three region features, the three move counter
regions, and the bias created a length-43 input vector for each given board state and move. We
trained our ANN by alternating the input view with respect to the actual professional’s move in
that situation, followed by a random move.

For a single professional move, we gave the ANN the input view centered on the empty spot
where the professional player went during that turn, with the target output value set as one. For
a single random move, we gave the ANN the board view centered on an empty spot chosen at
random from all available non-professional moves, with the target output value set as zero. The
goal of this training was to encourage the ANN to associate better moves — the ones made by a
professional player — with higher output values, and lesser moves with lower output values. By
limiting the amount of non-professional moves to be equal to the number of professional moves, we
also prevented any skewed data distribution.

3.4 Fuego

Fuego3 is an online collection of C++ libraries for developing software to play Go. Our original
plan for this project was to use Fuego for two purposes. The first was to update the board for us
as we were training. This would greatly assist us in forming the game transcripts, described in
Section 3.1.

The second planned use of Fuego was to enforce the rules of Go as we were playing, as we had
no desire to write our own rules from scratch. We wrote scripts so that our code could read in
output from Fuego and vice versa, but we ran into some issues with the whole piping process, so
we decided to scrap the second use of Fuego.

3http://fuego.sourceforge.net

6

http://fuego.sourceforge.net


0 1 2 3 4 5 6 7 8

0 W W E E E E E E E

1 B B E E E E E E E

2 W E E E E E E E E

3 B W E E E E E E E

4 B B W E B E E E E

5 W E E E E E E E E

6 B E E E E E E E E

7 W E E E E E E E E

8 B E E E E E E E E

Figure 5: A possible board state after 15 moves of KamiGo, playing for both black and white.

4 Results and Conclusions

4.1 The Artificial Neural Network

We trained our ANN on 100,000 iterations, but we also kept “intermediate” ANNs on file that were
based on 10,000 iterations, 20,000 iterations, and so on, so we could observe values of weights as
the algorithm was running. By looking at the weights, we saw that the vast majority of them for
both the hidden nodes and the output node were between -1 and 1, but strangely, two of the output
node’s 11 weights — 10 from the 10 hidden units and the last one from the bias — were almost
100. We observed that those weights were consistently growing with more training runs, but the
growth rate was decreasing, possibly indicating convergence.

Like those two large weights, most of the other weights appeared to be converging to some
values. Still, even with information about all the weights, it is difficult to interpret the output of
an ANN. By playing games with KamiGo, which we discuss in Section 4.2, we noticed that there
did not seem to be much of a difference in the performance of KamiGo when we trained with 5,000
iterations versus 100,000 iterations.

4.2 Results for KamiGo

Due to the relative simplicity of KamiGo compared to most other state-of-the-art Go software, we
were not surprised to see that our AI performed poorly. KamiGo performed strong initial moves by
placing stones near the center of the board. After the opening move, KamiGo would inexplicably
favor moves that hugged the left edge of the board. Upon reaching the left edge of the board,
KamiGo would go up to the corner at (0, 0), and then proceed to move down whenever possible,
and then do the same for the second column, then the third, and so on. Figure 5 indicates the
board state after one of our trials, where we had KamiGo generate all moves for both black and
white. This game was representative of most other games we ran, and seemed to occur no matter
which training sample we used (when it was at least 10,000 iterations). The following is the list of
moves for the game shown in Figure 5:

Moves = {B44, W24, B14, W13, B03, W02, B01, W00, B04, W05, B06, W07, B08, W10, B11}

We are unable to confidently explain why our KamiGo AI acted the way it did. One might
assume that since the moves seem to be going down column-by-column, we might simply be iterating
through the board’s elements, but that also doesn’t explain the first few moves. We do have some
theories, though:

7



• KamiGo has no conception of Moyo, or spread across the board. It cannot determine a region
on the board that is likely to become a player’s territory.

• Since most of the board is empty, KamiGo favors moves close to other stones, because pro-
fessionals almost always play a stone adjacent to, or in the immediate vicinity of a previous
move.

• Inputs are not diverse enough. Ideally, we would expand the set of inputs to include infor-
mation such as whether a piece is enclosed within some player’s territory, whether there are
eyes nearby, whether it can capture another piece, and so on.

• Go is not a game where good moves are entirely dictated by pattern, and thus some external
calculation is required.

The last two are especially important design considerations for a Go AI. Having a length-
43 input vector was unlikely to be successful, especially when other Go AIs using neural nets had
hundreds of features. Furthermore, another downside with our features is its sparsity: most features
have value 0, and the rest that don’t must have value 1. This might make it harder to extract
meaningful numbers. After all, we can only have at most one-third of the 42 non-bias inputs be
one; the rest must be zero by design.

Figure 6: A better paradigm to construct a Go AI.

In addition, it is not enough just to observe patterns, as moves that experts make can rarely be
captured by patterns alone. Figure 6 demonstrates a possible framework to take other input into
consideration.

4.3 Final Thoughts

This final project taught us a lot about the intricacies of creating a competent Go AI. It showed
us that there is great depth in a human Go player’s ability to understand the game that cannot be
fully captured by a simple set of features and a machine learning algorithm.

We also learned about the importance of good documentation and organization of methods.
With the amount of code that we produced over the past few weeks, it was easy to get lost or

8



forget where we implemented a certain algorithm. Also, when we were searching for a Go API to
build upon, we noticed that many of the publicly available databases were not well maintained or
documented, so deciphering their cryptic instructions often took longer than necessary.

• Philippe: This was the first time I have ever embarked on a project this big starting from
scratch, so it was an excellent experience in using high-level programming functions such as
writing and reading files, piping input and output, and handling large data sets.

• Simon: I don’t have anything to say.

• Daniel: This project taught me quite a few things. To keep it brief: (1) I should have taken
operating systems last semester, since that might have helped me understand the process
of connecting to Fuego, (2) I should have have a clear plan and documentation for code
before writing much of it, and (3) I should have prioritized the process of getting Fuego’s
input/output working with our programs.

Overall, though, we worked well as a team. We did get a working AI, and did so without
any conflicts, quarrelling, and hard feelings. We look forward to additional opportunities to work
together in the future.

References

[Dahl, 1999] Dahl, F. A. (1999). Honte, a go-playing program using neural nets. In In Workshop
on Machine learning in Game Playing, pages 205–223. Nova Science Publishers.

[Enzenberger, 1996] Enzenberger, M. (1996). The integration of a priori knowledge into a go playing
neural network. Technical report.

[Enzenberger and Cazenave, 2003] Enzenberger, M. and Cazenave (2003). Evaluation in go by a
neural network using soft segmentation. In In 10th Advances in Computer Games conference,
pages 97–108. Kluwer Academic Publishers.

[Fotland, 1993] Fotland, D. (1993). Knowledge representation in the many faces of go.

[Gelly et al., 2006] Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modification of UCT
with Patterns in Monte-Carlo Go. Rapport de recherche RR-6062, INRIA.

[Low, 2008] Low, Y. (2008). Investigating the use of Machine Learning Methods in Go. Master’s
thesis, Carnegie Mellon University.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. McGraw-Hill, New York, NY.

9


	Introduction to Go
	Basic Rules
	Go-Playing AI

	Artificial Neural Networks
	Our Contribution: KamiGo
	Obtaining Game Records and Setting Transcripts
	Setup and More Pre-Processing
	The Feature Vector
	Fuego

	Results and Conclusions
	The Artificial Neural Network
	Results for KamiGo
	Final Thoughts


